read
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product (exponent exp)
(make-product (deriv (base exp) var)
(make-exponentiation (base exp) (- (exponent exp) 1)))))
(else
((error "unknown expression type -- DERIV" exp)))))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(and (pair? x) (eq? (car x) '**)))
(define (base x) (cadr x))
(define (exponent x) (caddr x))
(define (make-exponentiation base exponent)
(cond ((=number? exponent 0) 1)
((=number? exponent 1) base)
((and (number? exponent) (number? base)) (fast-exp base exponent))
(else (list '** base exponent))))
(define (fast-expt b n)
(cond ((= n 0) 1)
((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1))))))
(define (square x) (* x x))
(define (augend s)
(if (null? (cdddr s)) (caddr s)
(cons '+ (cddr s))))
(define (multiplicand p)
(if (null? (cdddr p)) (caddr p)
(cons '* (cddr p))))
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product (exponent exp)
(make-product (deriv (base exp) var)
(make-exponentiation (base exp) (- (exponent exp) 1)))))
(else
((error "unknown expression type -- DERIV" exp)))))
(define (variable
? x) (symbol? x))(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (exponentiation
? x)(and (pair? x) (eq? (car x) '**)))
(define (base x) (cadr x))
(define (exponent x) (caddr x))
(define (make-exponentiation base exponent)
(cond ((=number? exponent 0) 1)
((=number? exponent 1) base)
((and (number? exponent) (number? base)) (fast-exp base exponent))
(else (list '** base exponent))))
(define (fast-expt b n)
(cond ((= n 0) 1)
((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1))))))
(define (square x) (* x x))
;Solution
2.57(define (augend s)
(if (null? (cdddr s)) (caddr s)
(cons '+ (cddr s))))
(define (multiplicand p)
(if (null? (cdddr p)) (caddr p)
(cons '* (cddr p))))