[CODE](define (fixed-point f first-guess)  (define (close-enough? v1 v2)    (display v1)    (newline)    (< (abs (- v1 v2)) tolerance))  (define (try guess)    (let ((next (f guess)))      (if (close-enough? guess next)          next          (try next))))  (try first-guess)) (define tolerance 0.00001)[/CODE]...

f(x) = 1 + 1/x일때 fixed point transformaiton 을 하면f(x) = x->  1 + 1/x = x 양변에 x 를 곱해서x + 1 = x^2 golden ration phi 는 위 식을 만족시키는 값이다. 증명끝.

> (f f). procedure application: expected procedure, given: 2; arguments were: 2> 이런 에러가 난다. (f f)-> (f 2)-> (2 2) 가 되어 위의 에러가 난다.

[CODE](define (filter-accumulate filter combiner null-value term a next b)  (define (iter a result)    (if (> a b)        result        (iter (next a) (combiner result                                  (if (filter a)   ...

[CODE]; Recursive(define (accumulate combiner null-value term a next b)  (if (> a b)      null-value      (combiner (term a) (accumulate combiner null-value term (next a) next b)))) ; Iterative(define (accumulate combiner null-value term a next b)  (define (iter a result)    (if (> a b)       ...

a. [CODE]; Recursive(define (product-r term a next b)  (if (> a b)      1      (* (term a) (product-r term (next a) next b)))) ; Iterative(define (product term a next b)  (define (iter a result)    (if (> a b)        result        (iter...

[CODE](define (sum term a next b)  (define (iter a result)    (if (> a b)        result        (iter (next a) (+ result (term a)))))  (iter a 0)) (define (term a) a)(define (next a) (+ a 1))[/CODE]

[CODE](define (integral f a b n)  (define (h) (/ (- b a) n))  (define (y k) (f (+ a (* k (h)))))  (define (integral-function i)    (* (/ (h) 3) (* (y i) (cond ((or (= i 0) (= i n)) 1)                 ...

Miller-Rabin test 가 잘 이해 안되서 풀다 말았습니다. 나중에 찬찬히 다시 봐야겠습니다.

(define (square x) (* x x)) (define (expmod base exp m)   (cond ((= exp 0) 1)         ((even? exp)          (remainder (square (expmod base (/ exp 2) m))                     m))        ...